
Adding shared memory parallelism to FLASH for

many-core architectures

Chris Daley, John Bachan, Sean Couch, Anshu Dubey, Milad

Fatenejad, Brad Gallagher, Dongwook Lee, Klaus Weide

Flash Center for Computational Science, Astronomy & Astrophysics, University of
Chicago, Chicago IL

E-mail: cdaley@flash.uchicago.edu

Abstract. In this paper we discuss evolutionary changes to FLASH to enable
enhanced applications to run efficiently on both the current generation BG/P and the
next generation BG/Q. We motivate the need for change by discussing current FLASH
applications and the challenges they are facing on today’s architectures. Our solution
to current challenges with a view to the next generation is mixed-mode MPI+OpenMP
FLASH applications. We show some preliminary results and discuss next steps.

1. Introduction

FLASH is a collection of code units which can be put together to create custom

multiphysics fluid dynamics applications [1]. It contains a huge number of code units

which allow simulation of problems from astrophysics [2], high energy density physics

(HEDP) and incompressible fluid dynamics. Important infrastructural capabilities

are adaptive mesh refinement (AMR) which places additional resolution in important

regions of the computational domain, a lagrangian framework and parallel I/O.

At the current time the biggest FLASH simulations are for supernova research

and are run on 10,000s to 100,000s of BG/P cores. Enabling FLASH to run efficiently

at this scale has involved incremental FLASH changes with each simulation campaign

[3, 4]. A new incremental change is necessary to run FLASH efficiently on many-core

architectures. This is particularly important for the FLASH code because it is a project

which has been given early science time on the soon to arrive BG/Q at Argonne National

Laboratory.

In this paper we describe adding shared memory parallelism to FLASH to exploit

the increasing on-node parallelism. In Section 2 we give an overview of the most recent

FLASH simulation campaigns on BG/P and discuss current and future challenges.

This motivates the need for shared memory parallelism as a way to overcome these

challenges on current architectures and also enable FLASH to run more effectively on

future architectures. We describe the shared memory parallelism added to FLASH in



Adding shared memory parallelism to FLASH for many-core architectures 2

Section 3, show preliminary performance results in Section 4 and put the findings in

context in Section 5.

2. Simulation overview

In the past few years the Flash Center has been awarded a significant computational

budget for Type Ia Supernova research on the BG/P at Argonne National Laboratory.

We have been able to effectively utilize this time by running massively parallel MPI-

only simulations in virtual node (VN) mode. In this configuration there are 4 MPI tasks

(1 per core) for each BG/P compute node and the 2GB of memory is divided evenly

between the 4 MPI tasks.

The VN configuration imposes a challenging memory constraint which forces the

research scientist to make tough trade-offs such as the number of multipole moments

vs accuracy. The amount of work per MPI task also needs to be carefully calibrated:

too little work and communication costs dominate; too much work and memory usage

exceeds physical memory. Estimating the work per MPI task is further complicated

because of AMR events during a simulation. It should come as no surprise that FLASH

production simulations on BG/P generally use most of the available memory.

The forthcoming Type Ia Supernova simulation campaigns bring a new set of

challenges. First, the research scientists want to use an enhanced hydrodynamics solver

which is directionally unsplit, and second, some of the simulations will be run on the new

BG/Q. The unsplit solver is desirable because it provides greater accuracy and symmetry

than the split solver at the expense of a larger memory footprint. An unfortunate

consequence of using the unsplit solver is that it becomes even more difficult to run

FLASH in VN mode on BG/P. Multithreading FLASH becomes an attractive option

because we could use dual mode (with 2 MPI tasks and 2 threads per task) and SMP

mode (with 1 MPI task and 4 threads per task) on BG/P without leaving idle cores in

each compute node. This is also a good option for BG/Q which has 4 hardware threads

per core, 16 computational cores per node and 16GB of main memory.

Another application which has already faced memory limits on BG/P is the Type II

Supernova application. A feature of this application is that each MPI task needs to have

a copy of a large 300MB nuclear equation of state (EOS) table. This makes running

in VN mode extremely difficult unless space-saving optimizations such as storing lower

precision tabulated data or fewer data points are made. The multithreaded version

of the application saves the scientist from having to make these kinds of compromises

which may affect the validity of the simulation.

3. Multithreaded FLASH

We have multithreaded several physics units of FLASH to speed up the solution

advancement on the computational mesh. The multithreaded units are split

hydrodynamics, unsplit hydrodynamics, flame, EOS (Gamma, Multigamma and



Adding shared memory parallelism to FLASH for many-core architectures 3

Helmholtz implementations), Multipole Poisson solver (2D cylindrical and 3D Cartesian)

and laser energy deposition. In most FLASH production simulations the computational

mesh is managed by Paramesh [5]. We give a brief overview of Paramesh before

introducing the two OpenMP threading strategies in FLASH.

Paramesh builds a hierarchy of blocks (or patches) as shown in Figure 1 according

to the application refinement criteria. Each block contains the some number of internal

cells (in the figure each 2d block has 6x4 internal cells) and additional guard-cells which

store the solution from neighboring blocks in order to provide a self-contained grid to the

application. The application can safely update the solution on different blocks before

passing control back to the mesh package for tasks such as guard-cell updates and flux

corrections. The provision of self-contained grids enables usage of huge numbers of MPI

tasks to simultaneously update the solution on many blocks at the same time. At the

current time the largest FLASH Type Ia Supernova simulations have around 1 million

blocks where each block contains 163 cells per fluid variable.

The first multithreading strategy in FLASH involves assigning different blocks from

the list of blocks to different threads. If an MPI rank has 10 blocks and there are two

threads per MPI rank then each thread would update 5 blocks. This is a coarse grained

threading strategy which we name “thread block list”. Such a strategy demands that

the list of blocks is much greater than the number of threads to avoid load imbalance

resulting from threads being assigned different numbers of blocks.

The second multithreading strategy in FLASH is finer-grained and involves using

multiple threads to simultaneously update the solution in different cells of the same

block. This involves threading the nested loops in the kernel subroutines of FLASH.

We distribute the slowest varying dimension amongst threads to reduce cache conflicts.

One nice feature of this strategy, which we name “thread within block”, is that it can

also be used for a uniform grid in which there is 1 block per MPI task. The work per

cell is similar for the hydrodynamic and flame units and so we use an OpenMP static

schedule. In future we could pin threads to cores and first-touch the cells assigned to

each thread to improve performance on NUMA many-core architectures.

In both strategies the mesh package calls from the application are serialized. This

means all threads are idle until a single thread completes operations such as guard cell

filling and flux correction.

4. Results and discussion

In this section we show preliminary FLASH multithreaded scaling for the RTFlame

application on BG/P (for MPI-only scaling see [4, 6]). This application is used to study

the turbulent nuclear combustion phase in Type Ia Supernova. The RTFlame simulation

selected for our experiments has a domain with effective resolution of 2563 cells [7]. It

makes use of the Paramesh AMR package and is run with 5 levels of refinement and

blocks of 163 cells. At initialization the adaptive mesh refines to create 21,462 total

blocks and no regridding events happen in the 20 time steps. We choose to run for



Adding shared memory parallelism to FLASH for many-core architectures 4

Figure 1. The Paramesh oct-tree. Image taken from http://www.physics.drexel.

edu/~olson/paramesh-doc/Users_manual/amr_intro.html on 02-13-2012.

only 20 time steps on 512 nodes of BG/P to get a feel for current performance without

consuming any significant computational time. The application also excludes I/O and

tracer particles.

All experiments are run on BG/P with a single MPI task per node which has access

to the entire 2GB of on-node memory (SMP mode). In our experiments this means each

MPI task is assigned an average of 42 FLASH blocks. Since each node on BG/P contains

4 cores we expect to get a faster time to solution when we run the multithreaded FLASH

code with the same number of MPI tasks and 2,3 and 4 OpenMP threads. We test both

the thread block list and thread within block multithreaded configurations and then

compare evolution time against the MPI-only version of FLASH. The results are shown

in Figure 2.

The figure shows that adding threads improves time to solution for both threading

strategies. The speedup is not ideal and a contributing factor to this is that the grid

management calls to exchange guard cells and correct fluxes are serialized. We have

not yet quantified the time spent in serial sections, OpenMP parallel sections and

MPI communication and so this is an important next step. We see slightly better

performance for the thread block list strategy which may be because of greater OpenMP

parallel region coverage of code sections with non-negligible computational work, but

until quantification of coverage and testing on many-core architectures with a larger

number of threads it is too early to favor one strategy over another.

It is likely that the speedup would be slightly worse in a production simulation

which includes I/O and particles, but as we will discuss this is a small amount currently

and should diminish in future. In a recent Type Ia supernova simulation on 65,536

cores of BG/P only 7% of total wallclock time was spent in I/O [3]. Going forward, the



Adding shared memory parallelism to FLASH for many-core architectures 5

Figure 2. Speedup for RTFlame simulation. Run for 20 time steps on 512 nodes of
BG/P in SMP mode with 512 MPI tasks and different numbers of OpenMP threads.
I/O and particles are excluded

compute node I/O time is expected to decrease significantly with usage of the Glean

framework for quickly moving simulation data to analysis nodes for in-situ analysis and

writing data to storage [8]. The analysis nodes could also be used for particle updates

because tracer particles have no impact on the dynamics of the simulation and are only

in a simulation for post-processing analysis.

Perhaps the most difficult bottleneck to overcome is the serialization of the

mesh package calls. We would like to investigate overlapping threads performing

computational work with a designated mesh package thread for all MPI communication,

but this is a challenging step which would require either or both

(i) restructuring of the adaptive mesh packages to support a non-blocking API which

communicates a subset of blocks at a time. In this API the application would notify

the mesh package of blocks ready to be communicated and the mesh package would

notify the application of blocks ready for solution update.

(ii) restructuring of the kernels in FLASH to update the solution on the cells which

will be communicated to other MPI tasks first. A guard cell exchange could then

happen in parallel with the solution update on the remaining cells.

5. Conclusion

In this paper we gave an overview of current large-scale FLASH simulations on the

BG/P. A major challenge we face is lack of memory per MPI task which makes it

difficult to use more sophisticated numerical schemes such as a unsplit hydrodynamics

solver, more detailed EOS tables, and more FLASH blocks per MPI task to stay above



Adding shared memory parallelism to FLASH for many-core architectures 6

strong scaling limits. A new capability in FLASH is support for multiple threads of

execution within each MPI task. This allows us to run FLASH in more memory efficient

ways which enables our scientists to run higher-fidelity simulations without the memory

limitations they are accustomed to on current generation architectures.

We have introduced a coarse-grained and fine-grained threading strategy into

FLASH. The coarse-grained strategy distributes the Paramesh blocks assigned to each

MPI tasks amongst threads and the fine-grained strategy distributes cells from each

block amongst threads. Both strategies show speedup with thread count for a RTFlame

application on BG/P. The speedup is not perfect, but some loss of speedup is expected

because of serialization of grid calls. Future work will quantify the OpenMP coverage

and investigate the most efficient ways to run multithreaded FLASH on many-core

architectures.

It is challenging to modify large software like FLASH which contains AMR and

multiple physics modules for the next generation of many-core architectures especially

since there is still on-going debate about future architectures. We have a large user

community and many diverse applications to support and so making revolutionary

changes to the code base is extremely difficult. Our approach of inserting OpenMP

directives is an evolutionary change necessary to allow a large, highly-capable piece of

software to run efficiently on the Blue Gene platforms.

Bibliography

[1] A. Dubey, K. Antypas, M.K. Ganapathy, L.B. Reid, K. Riley, D. Sheeler, A. Siegel,
and K. Weide. Extensible component-based architecture for FLASH, a massively parallel,
multiphysics simulation code. Parallel Computing, 35(10-11):512–522, 2009.

[2] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNeice, R. Rosner,
J. W. Truran, and H. Tufo. FLASH: An adaptive mesh hydrodynamics code for modeling
astrophysical thermonuclear flashes. The Astrophysical Journal Supplement Series, 131:273–334,
November 2000.

[3] R. Latham, C. Daley, W.K. Liao, K. Gao, R. Ross, A. Dubey, and A. Choudhary. A case study
for scientific i/o: improving the flash astrophysics code. Computational Science and Discovery,
page to appear.

[4] A. Dubey, A. Calder, C. Daley, C. Graziani, R. Fisher, G.C. Jordan, D.Q. Lamb, L.B. Reid,
D.M. Townsley, and K. Weide. Pragmatic optimizations for best scientific utilization of large
supercomputers. submitted and revised.

[5] P. MacNeice, K.M. Olson, C. Mobarry, R. de Fainchtein, and C. Packer. PARAMESH: A parallel
adaptive mesh refinement community toolkit. Computer Physics Communications, 126(3):330–
354, 2000.

[6] B.R. de Supinski et al. Modeling the office of science ten year facilities plan: The peri architecture
tiger team. Journal of Physics: Conference Series, 180(1):012039, 2009.

[7] D. M. Townsley, A. C. Calder, S. M. Asida, I. R. Seitenzahl, F. Peng, N. Vladimirova, D. Q. Lamb,
and J. W. Truran. Flame evolution during Type Ia supernovae and the deflagration phase in the
gravitationally confined detonation scenario. The Astrophysical Journal, 668:1118–1131, 2007.

[8] V. Vishwanath, M. Hereld, M.E. Papka, R. Hudson, G. Jordan, and C. Daley. In situ data
analytics and I/O acceleration of FLASH astrophysics simulations on leadership-class systems
with GLEAN. In SciDAC, Journal of Physics: Conference Series, July 2011.


